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Abstract— S-Learning is a sequence-based learning algorithm of the algorithm. Even when this multiple-instance apploac
patterned on human motor behavior. Discrete-time and quan- js successful, it still does not aid the system in reaching
tized sensory information is amassed in real-time to form a dy- unfamiliar goal states.

namic model of the system being controlled and its environment. I L . . . .
No explicit model is provided a priori, nor any hint about what The distinguishing characteristic of S-learning is that it

the structure of the model might be. As the core of a Brain- continually records recurring patterns to build a librafy o
Emulating Cognition and Control Architecture (BECCA), S-  past experiences. This library allows a goal-seeking agent
Learning provides a mechanism for human-inspired learning, to piece the patterns together to form a complete path to
memory, and control in machines. In a simulation of a point-to- 5 444| The strength of this approach is that the goal can
point reaching task, S-Learning de_monstrat_es several attributs be any previously-visited state, not just one or a few that
of human motor behavior, including learning through explo- ' . X
ration and task transfer. were hard-coded from the start. Thus S-learning provides a
potential solution to the dynamic TD problem.
I. INTRODUCTION .

The field of “Learning to learn,” also termegkneraliza- B. Relation to Markov Models
tion or bias learning, takes machine performance a step A set of sequences of length two is similar to a Markov
further than many learning algorithms. [1] Generalizatiormodel. The likelihood of transitioning from state A to st&e
algorithms seek to improve system performance not just ¢in be inferred from the sequence set and could alternativel
tasks for which the systems explicitly train, but also onelpy be represented in matrix form. Similarly, longer sequences
unrelated tasks. Humans are often able to learn a task affgtuld be represented as higher-order Markov models. It is
only one or two exposures due to the ability to generalizaccurate to describe an S-Learning sequence library as a
from previously learned tasks. Generalization algorithmshorthand way of representing a series of Markov models
attempt to imbue automated systems with this same abilit9f order one to ordetV — 1, where N is the maximum
Common approaches include connectionist networks [2], [3$€duence length. The advantage of a sequence library is that
statistical (including Bayesian, memory-based, and Markdt is concise. A first order Markov model in a system with
vian) methods [4], [5], [6], dimensionality reduction [nd M possible states can be represented by a M matrix,
modified reinforcement learning techniques [8], [9]. A suba second order Markov model byM? x M matrix, and an
set of generalization algorithms are explicitly biologiga N —1 order Markov model by &/~ x M matrix. For the
motivated. They mimic the human brain, as it serves a8ystem simulated in this paper, in whié¢h = 5 and M =
an existence proof for solutions to daunting perception ardi>", this representation quickly becomes computationally
control problems. S-Learning falls into this category. burdensome. In this sense, a sequence library is a sparse

matrix coding for a multi-order Markov model.

A. Relation to Temporal-Difference techniques

S-learning is a variant of temporal-difference (TD) learn-
ing. It is superficially similar to Q-learning, another TDA. Architecture
algorithm, but involvessequences of discrete events (hence S-Learning is at the core of a biomimetic Brain-Emulating
the §). TD algorithms are typically effective at discoveringCognition and Control Architecture (BECCA, see Fig. 1).
optimal sequences of actions in unknown environment8ECCA consists of an Agent, a Planner, a World, and an S-
However, existing algorithms almost exclusively addré®s t Learning Engine, each of which is briefly described below.
static TD problem, in which the states that result in reward o Agent. The Agent sets goals for the system. The goals are
punishment are fixed. This is equivalent to a control systegxpressed in terms of the sensory state information availab
that has a fixed goal that does not vary over time. Ang¢tom the World. Goals can be a specific state, a set of states,
while multiple instances of a static TD algorithm, such a®r a portion of a state. Multiple, even conflicting, goals can
Q-learning, can be employed to account for multiple goaxist. Goals can change over time, and the Agent can use
states, the experience gained while training one does n@éw state information to decide when and how to change
transfer to others in a straightforward way. Such an apgproaghem. The current set of goals is available for use by the
typically requires a separate training period for eachaims®  Planner.

) ) ) Planner. The Planner determines which (if any) actions
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Il. METHOD



Goals Actions

~ Agent > Planner > World R 3) For eachy in y, find any goal states in the sequence.
Those containing goal states from,, a subset ofy..
Q“e'y‘ tRep"” Y= comprises possible plans of action for reaching a
S-Learning goal state.
Engine When the S-Learning Engine is queried by the Planner,
it reports back withy,, which the Planner includes in
[ Current state its selection process. Other, more sophisticated predicti

- methods based on the sequence library are possible as well.
Fig. 1. Brain-Emulating Cognition and Control Architect@ECCA), FOr instance, daisy-chaining sequences together, cgeatin
featuring S-Learning: a block diagram representation. Bikearning trees of possible plans, would allow the Planner to create
algorithm is used as an engine to bootstrap a model _of the Wtﬁhds novel plans and generate a series of sub-goals.
model is referenced by the Planner and uses new state infonmatrefine o .
its world model in order to achieve goals provided by the Agent If the Planner utilizes a sequence from the library to form a
prediction and a plan of execution, then it has an expectatio
about when a goal will be achieved. If a goal is not achieved
The Planner queries the S-Learning Engine in order t@hen expected, that sequence of events is appended to the
predict the results of possible courses of action. Exptoyat library, allowing future prediction of the same failure.
actions are also considered, particularly if the curreatest  |f a goal is achieved when expected, then the successful
is unfamiliar and the S-Learning Engine cannot predict 8equence is compared against the sequence used in predic-
path to a goal state. After a course of action is determineélon, and their common elements are used to form a new
the Planner issues commands to the World and reports thassyuence. Thisntersection sequence contains information
actions in the state vector. that is relevant to achieving the goal, but tends to omit
World. The World is the external system that is beingsources of noise and irrelevant sensory information. To use
learned and controlled. It is analogous to the Plant ian everyday example, humans do not factor in the color
classical control system formulations. The World can eitheof a cup when planning to grasp it; in this task, color is
be simulated or instantiated in hardware, but in either casgrelevant. Likewise, intersection sequences contairy tm
the only information it provides back to the rest of BECCA isinformation that is consistently present during successfu
through its sensors. This means that in simulations, BECCgdequences, and leaves out information that is not.
does not have access to the World’s internal variables. o .
S-Learning Engine. The S-Learning Engine uses theC: Mimicking biology
regularly-updated stream of state information to boopstra The structure of the state information and dynamics by
a model of the World. There is no explicit model, assumedhich it is modified are based loosely on neural processes.
dynamics, or implied structure. Instead, the S-Learning EfThe state that is passed from the World to the S-Learning
gine observes repeated state sequences, particularlg th&ngine is a vector of ones and zeros, representing an array
that result in a goal state. These state sequences are staveédheurons that are either firing or at rest. Each state is
in a library, which is referenced by the Planner duringepresented in the sequence library as an array of binary
action planning. The S-Learning Engine also keeps track oumbers, representing synaptic connections betweenrgenso
the sequences that the Planner selects as action plans. Hieurons and a central neuron or neural circuit that reptesen
sequence leads to a goal, as predicted, it is reinforced atitht state. The sequence representation within the library
weighted more heavily in the sequence library. If a sequenég an acknowledgement of the brain’s propensity to store
fails to lead to a predicted goal, its weighting in the lilyrar events sequentially, as mediated by the hippocampus [10]
is reduced. After a number of failed predictions, a sequen@nd instantiated in thalamocortical circuits. [11], [12ptB
becomes sufficiently weak that it is dropped from the libraryunexpected achievement of a goal state and unexpected
failure to achieve a goal state are followed by alteration
of synaptic weights, one model of neuroplasticity. Even the
S-Learning provides a single mechanism for handlingjscrete nature of sensory states and actions within BECCA
learning, memory, and prediction in BECCA. The learninggng S-Learning is motivated by a growing body of evidence
and memory behavior of S-Learning emerge from the wajat human sensory [13], [14], [15], [16] and motor [17],
new states are incorporated into the bootstrapped Wor[gg], [19], [20], [21], [22] processes are inherently dister,

model. Initially, the sequence library, has no prior experi- modulated by rhythmic gamma and theta activity in the
ences and contains no state sequences. When a goal staigyign. [23], [24], [25], [26], [11]

achieved (presumably though the exploratory efforts of the .
Planner) the sequence of events leading up to the goal dfe Smulation

B. SLearning Algorithm

stored in the library. _ S-Learning was applied to a simulation of a human point-
Prediction in S-Learning is straightforward: to-point reaching task. The World, consisting of an anatom-
1) Begin with the most recently observed stage ically approximate model of a human head, torso, and arm,

2) Find the set of all the sequenceg, in the sequence including inertial properties, was simulated in MATLAB.
library, , that begin withrg. Call this sety. (Fig. 2) Control inputs to the arm from the Planner comprised



TABLE |

2) Subtask B: The second task was identical to the first,
COMPOSITION OF THE STATE VECTOR IN THE REACHING SIMULATION

with the exception that the targets were both shifted 10 cm

to the right.

Sensory modalit Number of . . .

or com?/nand typi state elements As currently implemented in MATLAB, BECCA is struc-
command: shoulder flexion 4 tured as an iterative loop. For the first 10,000 iterationthef
command: shoulder extension 4 BECCA loop, Subtask A was presented. This was followed
command: elbow flexion 4 by 5,000 iterations of Subtask B, and then completed with
command: elbow extension 4 ! . . ’
vision: farget x-position 10 another 5,000 iterations of Subtask A.
vision: target y-position 10
vision: target radial error 10 Ill. RESULTS
vision: target angular error 8 . . .
vision: target angular error finé 36 Early attempts to reach the goals consisted primarily of
position: coarse shoulder 11 exploratory wandering (random movements). After a few
POS!E!O’“ ?Oafsﬁ e'EjOW ég chance successful sequences were added to the library,
position: fine shoulaer . . .
position: fine elbow &= these se_rved as a basis for better—dlrected_movementsh whic
velocity: shoulder 6 resulted in more successful sequences. This process gbduc
velocity: elbow 6 progressively more direct movement sequences, resulting

l Total: [ 246 l in goals being reached more rapidly and more frequently.

(Fig. 3) The number of goals reached in each task per 1000-
iteration block are shown in Fig. 4.

a set of position steps in joint equilibrium position with
minimum-jerk transitions. The sensory information passed
from the World back to BECCA included angular velocity,
coarse and fine angle information for both the shoulder and
elbow joints, coarse vision of the position of the target,
and coarse vision of the position error between the target
and the hand. Each of these sensory modalities was binned
(quantized) and expressed in terms of a vector of binary
states. (Table 1.)

10cm

Fig. 3. Typical paths to goal at various stages of learningtial
movements resemble “motor babbling” observed in infants andthgsized
as a primary mechanism for motor learning. Later movements become
more efficient, resulting in shorter paths, smoother movemdeiser
submovements, lower actuation torques, and more rapid goavachent.

IV. DISCUSSION

The most striking aspect of Fig. 4 is that time spent learn-
ing one task appears to transfer to the other. The learning
Fig. 2. A graphical representation of the simulated humanopming a ~ CUrve in Epoch B is much steeper than in A1, presumably
reaching movement. because some of the experience gained in Al generalized to

B. Similarly, the experience gained during Epoch B appears

The simulated reaching task consisted of two alternate have generalized to A2; the initial performance levels
ing subtasks. Interspersing them allowed evaluation of $a A2 are higher than those at the conclusion of Al. The
Learning’s ability to learn, to generalize that learningato two tasks are distinctly different as far as the algorithm is
new task, and to retain that learning in the face of potenti@loncerned; there is no explicit representation that allSws
interference. Learning to make this transfer. Transfer between similar,

1) Subtask A: The first simulated task consisted of mov-complementary tasks is a feature of human motor learning as
ing the hand to a target position on the “subject’s” midlineyell. Contrast this with two common approaches to this type
15 cm from the sternum. Once the center of the hand arriveal learning task, Q-Learning and connectionist networks,
within 4 cm of this position, a new target was presented owhich typically require either a large amount of re-tragin
the midline, 45 cm from the sternum. After the center of théime when a task is changed or multiple instances of the
hand came within 4 cm of this target, the cycle started oveespective algorithms under a supervisory context-switch
again. module. S-Learning mimics human performance in that only




< 140
o \/\
2120 [1]
]
o
- 100 B A2
% [2]
s 80
g AT [3]
(%}
= 60
S [4]
5 40 [5]
5
e} 0
£ 0 2 4 6 810121416 18 20 (6]
>
c block number
[71
Fig. 4. Goals reached during 1000-iteration blocks. Graydsashow plus
and minus one standard deviation. Typically, one movement wesuéd [8]
per iteration of the BECCA loop. During epoch Al, performaitereased
quickly during the first 6 blocks, slowing after that. Epocts&w an initial
drop in performance as the S-Learning algorithm began legrtiie new [9]
task, but performance increased more rapidly and to a higkel fean in
Al. Epoch A2 showed no great drop in performance due to affectsfof
B, but rather started out at a higher level of performance thamowed [10]

when Al terminated.

a single, unmodified instance was needed to learn both tas[%]
shown here.

S-Learning is an extremely general learning approacl[{l.z]
The same S-Learning and BECCA implementation shown
here could have been applied to stabilizing an inverted
pendulum, learning to grasp with a robotic hand, or steerin@
an unmanned vehicle. As long as the state contains apa]
propriate sensor information and the system has adequate
actuation, S-Learning can be used to learn its behaviae st 15]
it in memory, and recall it for use in control. Many other
methods have been used to control two-link robots; it is not
a difficult control problem. The significance of S—Learning[16
accomplishing the task is that it did so without knowiag [17]
priori how to interpret any of its sensor data or how to reach
its goal. (18]
V. CONCLUSION

By basing its function on observed psychophsyiology, S-
Learning is able to recreate some of the salient featuré
and strengths of human motor behavior. This paper has
demonstrated a simple simulation of S-learning in point-to
point reaching. However, the general nature of the algorith [21]
suggests that it may also be capable of solving more complex
motor control problems, including grasp, bimanual marapul
tion, visual tracking, balance, and bipedal locomotiortuFer  [22]
simulations and hardware implementations of S—Learnin@s]
will test whether this is the case.

[29]
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